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Abstract
Potential resonances are usually investigated either directly in the complex
energy plane or indirectly in the complex angular momentum plane. Another
formulation complementing these two approaches is presented in this work.
It is an indirect algebraic method that studies resonance in a complex charge
plane (Z-plane). The complex scaling (rotation) method is employed in the
development of this formulation. A finite L2 basis is used in the numerical
implementation of the method.

PACS numbers: 03.65.Nk, 03.65.Ca, 02.30.Tb, 03.65.Fd

1. Introduction

Obtaining energy resonances is of prime significance in the study of potential scattering.
Several techniques have been developed by many researchers over the years for locating
resonances (position and width) of various interaction models1. The objective of most of these
studies is to increase the accuracy of the values obtained, and to improve the computational
efficiency in locating resonances. All of these investigations are performed in one of two
modes: either directly in the complex energy plane or indirectly in the complex angular
momentum plane. In the former setting the energy spectrum of the Hamiltonian (poles of
Green’s function) generally consists of three parts: (1) a discrete set of real points on the
negative energy axis corresponding to the bound states, (2) the real positive energy line which
corresponds to the continuum scattering states and (3) another discrete set of points in the

1 The volume of publications on this topic is overwhelming. Interested readers are advised to consult any of the
searchable databases to run refined searches, with as many relevant keywords, to obtain manageable output on a
specific interest. Books and articles cited in this work and references therein are examples of such publications with
broad coverage. However, a good start could be the book by Kukulin et al [1].
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Figure 1. The poles (dots) and discontinuity (line) of the p-wave Green function in the complex
energy plane for the system whose potential is given by equation (1.1). One bound state and 11
resonances (two being sharp) are shown.

lower half of the complex energy plane corresponding to resonance states. These are bound-
like states that are unstable, decaying with a rate that increases with the (negative) value of the
imaginary part of the resonance energy. That is, sharp or ‘shallow’ resonances (those located
below and close to the real energy axis) decay much slower than broad or ‘deep’ resonances
that are located below, but far from, the real energy axis. Figure 1 shows such a typical
structure, which is associated with the potential

V (r) = 5e−(r− 7
2 )2/4 − 8e−r2/5. (1.1)

On the other hand, resonances could also be studied in the complex angular momentum
plane by locating the Regge poles [2] for a given energy and investigating their trajectories as
the (complex) energy is varied. Resonance energies are those that correspond to points
on the trajectories that cross the real angular momentum axis at non-negative integers
(� = 0, 1, 2, . . .). Figure 2(a) shows an example of trajectories associated with the potential
(1.1) for a given range of energies with a fixed negative imaginary part, and displays the
lowest five trajectories. It indicates the presence of an � = 3 resonance. Figure 2(b) shows
trajectories for the same system, but in which the energies are real. These do not cross the real
�-line. Nonetheless, they could still be used to extract resonance information.

The basic principle underlying the various numerical methods used for the study of
resonance, which are implemented within one of these two formulations, is that the position of
a resonance is stable against variation in all computational parameters. In this work the same
principle will be used to introduce a third formulation that complements the two approaches
that were explained briefly above. The analysis of resonance in this formulation is performed
in a complex charge plane. We employ the complex scaling (rotation) method [3] in the
development of this formalism. A simple potential example will be given to demonstrate
the utility and accuracy of this method. The results obtained from such an analysis will
be compared with those found elsewhere in the literature. Additionally, new resonances are
calculated, with some being so broad that they are beyond the range of applicability of some
present techniques.

2. Complex scaling in the charge plane

By complex scaling or complex rotation we mean the transformation of the radial coordinate
r as shown by

r → r eiθ (2.1)
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Figure 2. (a) The trajectory of Regge poles in the complex �-plane for the system whose potential
is given by equation (1.1). Along these trajectories the real part of the energy varies smoothly from
3.0 to 10.0 au, while the imaginary part is fixed at −2.0 au. The graph indicates the presence of a
resonance where the trajectory crosses the real line at � = 3. Our calculation gives the following
value for this resonance: E = 7.091 723 04 − i2.001 734 29 au. (b) Regge trajectories plot for the
same system as used for (a), with the exception that the imaginary part of the energy vanishes.
These trajectories start on the real axis and bend upwards as the energy increases.

where θ is a real angular parameter. The Green function (resolvent operator) is formally
defined as Gθ ≡ (Hθ − E)−1, where E is the complex energy and Hθ is the complex-rotated
full Hamiltonian of the system. The effect of this transformation on the pole structure of the
Green function in the complex energy plane consists of the following: (1) the discrete bound
state spectrum that lies on the negative energy axis remains unchanged; (2) the branch cut
(the discontinuity) along the real positive energy axis rotates clockwise by the angle 2θ and
(3) resonances in the lower half of the complex energy plane located in the sector bound by the
new rotated cut line and the positive energy axis get exposed and become isolated. However,
due to the finite size of the basis used in performing the calculation, the matrix representation
of the Hamiltonian is finite resulting in a discrete spectrum. Consequently, the rotated cut
line is replaced by a string of interleaved poles and zeros of the finite Green function, which
tries to mimic the cut structure. This method will now be developed to make it suitable for
implementation in the complex charge plane.

In the atomic units h̄ = m = 1, the one-particle wave equation for a spherically symmetric
potential V(r) in the presence of the Coulomb field reads

(H − E)χ =
[
−1

2

d2

dr2
+

�(� + 1)

2r2
+

Z

r
+ V (r) − E

]
χ = 0 (2.2)
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where � is the orbital angular momentum and Z is the electric charge in units of e. χ(r) is
the wavefunction that is parametrized by �, Z, E and the potential parameters. Equation (2.2)
could be rewritten as (Ĥ − Z)χ̂ = 0, where

Ĥ = r

2

d2

dr2
− �(� + 1)

2r
+ rE − rV (r) ≡ Ĥ 0 + V̂ (2.3)

and V̂ ≡ −rV (r). The continuum could be discretized by taking χ̂ as an element in an L2

space with a complete basis set {φn}. The integration measure in this space is dr/r . We
parametrize the basis by a length scale parameter λ as {φn(λr)}. The following realization of
the basis functions is compatible with the domain of the operator Ĥ and satisfies the boundary
conditions (at r = 0 and r → ∞)

φn(λr) = Anx
α e−x/2Lν

n(x) (2.4)

where x = λr , α > 0, ν > −1 and n = 0, 1, 2, . . . . Lν
n(x) is the Laguerre polynomial of

order n and An is the normalization constant
√

�(n + 1)/�(n + ν + 1). The choice 2α = ν + 1
makes the basis set {φn} orthonormal. The matrix representation of the ‘reference’ operator
Ĥ 0 in this basis is written as

(Ĥ 0)nm = 〈φn(x)| λ

2
x

d2

dx2
− �(� + 1)

λ

2x
+

E

λ
x |φm(x)〉 . (2.5)

Consequently, the action of the transformation (2.1) on Ĥ 0 is equivalent to

λ → λ e−iθ . (2.6)

In the manipulation of (2.5) we use the differential equation, differential formulae and three-
term recurrence relation of the Laguerre polynomials [4]. As a result, we obtain the following
elements of the matrix representation of the reference operator:

(Ĥ 0)nm = λ

(
E

λ2
− 1

8

)
(2n + ν + 1)δn,m − λ

(
E

λ2
+

1

8

) √
n(n + ν)δn,m+1

− λ

(
E

λ2
+

1

8

)√
(n + 1)(n + ν + 1)δn,m−1 +

λ

8
[ν2 − (2� + 1)2](x−1)nm (2.7)

where the symmetric matrix (x−1)nm = 1
ν
(An>

/An<
) and n> (n<) is the larger (smaller) of

n and m. To simplify this representation we take ν = 2� + 1, which results in a tridiagonal
matrix representation for Ĥ 0. Now, the only remaining quantity that is needed to perform the
calculation is the matrix elements of the ‘potential’ term V̂ as defined in equation (2.3). This
is obtained by evaluating the integral

V̂ nm =
∫ ∞

0
φn(λr)[−rV (r)]φm(λr)

dr

r

= −1

λ
AnAm

∫ ∞

0
xν e−xLν

n(x)Lν
m(x)[xV (x/λ)] dx. (2.8)

The evaluation of such an integral is almost always done numerically. We use the Gauss
quadrature approximation [5], which gives

V̂ nm
∼= −1

λ

N−1∑
k=0


nk
mk[µkV (µk/λ)] (2.9)

for an adequately large integer N. µk and {
nk}N−1
n=0 are the respective N eigenvalues and

eigenvectors of the N × N tridiagonal symmetric J matrix whose elements are

Jn,n = 2n + ν + 1 Jn,n+1 = −
√

(n + 1)(n + ν + 1). (2.10)

These findings will be used in the following section to locate and analyse the resonance
structure for the potential V (r) + Z/r in the complex Z-plane. An example will be given to
illustrate the utility and demonstrate the accuracy of the proposed method.
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Figure 3. (a) The trajectory of the poles of the s-wave Green function Ĝθ (Z) in the complex
Z-plane for the system whose potential is 7.5r2 e−r + Z/r . Along these trajectories the energy
is real, and varies smoothly from 0.0 to 10.0 au. They start on the real Z-axis for lower energies
and bend upwards as the energy increases. (b) Same as (a), with the exception that the energy is
now complex with a negative imaginary part that is kept constant at −3.0 au. The crossings at, or
near, Z = −8, −4 and 9 signify resonances that are calculated as 1.287 274 955 − i2.971 759 279,
3.125 581 370 − i3.023 378 045, and 9.733 679 948 − i2.988 524 088 au, respectively.

3. Studying resonance in the complex Z-plane

The system described by equation (2.2) may be studied by investigating an equivalent system as
described by the equation (Ĥ − Z)χ̂ = 0. However, this equivalence is only an approximation
that improves with an increase in the size of the basis, N. Our investigation of the latter system is
made by using the method of complex rotation which, as explained previously, is implemented
by applying the transformation λ → λ e−iθ on the matrix representations (2.7) and (2.9). The
resulting complex eigenvalues {Zn}N−1

n=0 of Ĥ θ are the poles of the finite Green’s function

Ĝθ = (
Ĥ θ

0 + V̂ θ − Z
)−1

. The subset of these poles that are stable (in the complex Z-plane)
against variation in the parameters λ and θ are the poles that are physically significant.
However, θ must always be larger than the minimum angle needed to expose the poles of
interest. The branch cut of Green’s function Ĝ(Z) is located on the negative Z-axis. Complex
scaling rotates this cut clockwise through the angle θ and exposes the relevant poles. This
behaviour may be understood by comparing it with the corresponding one in the complex
energy plane, and noting that (i) the relative sign of Z to that of E in the Hamiltonian (2.2)
is negative, and (ii) the length dimensions of E and Z are the same as those of λ2 and λ,



5868 A D Alhaidari

Table 1. Resonance energies (E = Er − i�/2) for the potential 7.5r2 e−r + Z/r . Our results
are compared with those found in the cited references. Stability of our calculation is based on a
substantial range of variation in λ (∼5 to 100 au) and θ (∼0.5 to 1.0 radians). The accuracy is
relative to a basis dimension of N = 200.

Z Er (au) � (au) Reference

0 3.426 39 0.025 549 [6]
3.425 7 0.025 6 [7]
3.426 0.025 6 [8]
3.426 0.025 8 [9]
3.426 390 331 0.025 548 962 [10]
3.426 390 310 0.025 548 961 This work

0 4.834 806 841 2.235 753 338 [10]
4.834 806 841 2.235 753 338 This work

0 5.277 279 780 6.778 106 356 [10]
5.277 279 864 6.778 106 591 This work

−1 1.780 5 9.58 × 10−5 [9]
1.780 524 536 9.5719 × 10−5 [10]
1.780 524 536 9.571 94 × 10−5 This work

−1 4.101 494 946 1.157 254 428 [10]
4.101 494 946 1.157 254 428 This work

−1 4.663 461 099 5.366 401 539 [10]
4.663 461 097 5.366 401 540 This work

respectively. As we vary the energy (generally, complex), the poles of Ĝθ move along
trajectories in the complex Z-plane. The points where the stable trajectories cross the real
Z-axis correspond to resonances. For elementary charged particles scattering, the relevant
crossings are those at Z = 0,±1,±2, . . . .

The union of all of the sets of eigenvalues {Zn(E)}N−1
n=0 for a given range of (complex)

values of E produces N trajectories in the Z-plane. The physically relevant ones are those which
are stable against variation (around a plateau) in all computational parameters. However, it
should be noted that the ordering of these eigenvalues by the index n is computation-dependent
and is not necessarily the same for two different values of E. Consequently, one has to plot
all of the eigenvalues for each E in the energy range to see the full picture. To illustrate these
findings we consider, as an example, the potential function

V (r) = 7.5r2 e−r (3.1)

which has been studied frequently in the literature [6–10]. Figure 3(a) shows the lowest s-wave
trajectories for real energies. They start on the real Z-axis for low energies and bend upwards
as the energy increases. The same graph is repeated in figure 3(b), but now the energy has
a non-vanishing imaginary part. It shows several crossings at, or near, Z = −8, −4 and 9,
indicating resonance. In practice, we vary the imaginary part of E until it produces trajectory
plots that have at least one branch crossing the real Z-axis at, or very close to, an integral
value. Subsequently, we zoom in at one of the crossings by stretching the scale of the real
Z-axis where we will find that the crossing is not quite at the integral value of Z. Thus, we
need to fiddle with a higher significant digit in the imaginary part of the energy to bring the
trajectory crossing back to the integral value. This process continues until we reach the limit
of accuracy which is indicated by erratic behaviour of the trajectory points that can only be
eliminated by an increase in the size of the space, N. On the other hand, the accuracy of the
real part of the energy is improved by iteration of successive steps of (1) reducing the length of
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Table 2. A more comprehensive list of resonances for the same potential as in table 1, and for
several values of Z and �.

� = 0 � = 1 � = 2

Z Er (au) � (au) Er (au) � (au) Er (au) � (au)

0 5.064 929 608 11.952 069 576 5.427 742 2973 9.280 688 974 5.793 693 0648 6.660 951 732
4.268 860 299 17.433 816 868 5.360 469 6511 4.394 482 330 5.502 943 9380 11.843 122 555
2.947 781 6003 23.061 029 462 4.887 769 0564 14.623 615 321 5.491 345 3119 2.107 291 5737
1.147 183 738 28.738 014 274 4.646 634 4207 0.650 589 0286 4.652 774 2298 17.324 910 417

−1.096 688 979 34.402 043 587 3.801 798 4630 20.187 028 641 3.289 231 6413 22.949 471 910
−3.754 144 12 40.009 014 99 2.218 906 3561 25.846 441 901 1.452 991 4754 28.624 988 427
−6.800 304 45.526 31 0.178 577 3686 31.524 321 640 −0.821 534 539 34.290 493 164

−10.21 50.93 −2.286 964 11 37.167 523 861 −3.505 402 56 39.902 0901
−5.150 992 42.737 42 −6.5742 45.4265
−8.39 48.20 −10.0 51

−1 4.561 151 055 10.413 396 043 4.932 942 955 8.233 838 942 5.300 613 4903 5.884 714 861
3.849 197 760 15.816 567 000 4.750 053 489 3.505 579 849 5.088 641 4686 10.943 326 210
2.593 348 5088 21.387 481 635 4.476 218 206 13.477 261 705 4.900 516 1468 1.567 507 0165
0.844 647 138 27.021 909 107 3.848 001 6348 0.275 384 4592 4.300 179 8532 16.341 585 409

−1.356 846 588 32.653 003 793 3.453 996 8253 18.968 736 871 2.986 244 924 21.903 035 992
−3.978 854 424 38.234 130 33 1.921 603 5248 24.572 340 524 1.190 735 6869 27.527 998 140
−6.9947 43.730 92 −0.077 733 2579 30.205 316 536 −1.049 790 7711 33.151 641 912

−10.38 49.1 −2.509 315 965 35.811 697 83 −3.704 884 68 38.727 911 891
−5.344 69 41.351 08 −6.749 011 44.222 22
−8.56 46.8 −10.16 49.61

+1 5.867 437 031 8.158 768 524 5.940 903 6759 5.280 262 4063 6.269 729 8719 7.448 168 504
5.569 681 242 3.422 105 119 5.902 424 814 10.320 417 212 6.057 188 1775 2.690 560 7459
5.545 052 842 13.452 0219 82 5.371 865 4458 1.146 241 8923 5.905 180 463 12.745 6471 81
4.666 831 409 19.017 323 601 5.284 083 4258 15.761 247 384 4.996 063 0849 18.307 602 572
4.594 490 160 0.257 890 6726 4.137 209 0078 21.396 522 076 3.584 578 573 23.993 734 433
3.282 757 1775 24.707 275 525 2.505 669 7545 27.112 401 950 1.708 693 6696 29.719 160 385
1.432 515 0596 30.432 561 004 0.425 698 1801 32.836 153 732 −0.599 061 162 35.426 371 269

−0.851 599 9765 36.134 066 609 −2.072 721 3505 38.517 201 91 −3.311 106 73 41.073 405 78
−3.542 588 981 41.770 275 53 −4.964 49 44.118 55 −6.404 053 46.628 23
−6.617 38 47.310 57 −8.2283 49.6 −9.86 52.07

−10.056 52.73

the trajectory to a minimum by refining the range of the real part of the energy that produced
it and (2) zooming in vertically by stretching the scale of the imaginary Z-axis. A numerical
algorithm using bisection or Newton–Raphson routines [11] could be developed to automate
the search.

In our calculation, we start with a rough estimate of resonance values obtained by the
complex rotation method [3] for the potential (3.1). The level of accuracy of the proposed
formalism is then demonstrated by improving on these values for a given size of the basis.
Table 1 compares values found in the literature to those obtained in this work. Other resonances
are also obtained in table 2, some of which are very broad. Stability of these results against
variation in λ and θ (for a basis size N = 200) is observed up to the tenth decimal place.

Nonetheless, the merit of the present approach is not in the accuracy of the results
obtained, but rather in the global picture that it gives for the overall behaviour of resonance
and its structure. For this it is endowed with formal and computational analogies to the Regge
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poles and Regge trajectories in the complex �-plane. Specifically, it has close similarities
to the Regge–Sommerfeld–Watson method in dealing with poles and trajectories allowing
for the use of all the analytic and numerical tools used in that theoretical scheme. In particular,
the scattering matrix could be studied by the analysis of the poles and their trajectories in
the complex Z-plane in much the same way as that involving the analysis of Regge poles and
Regge trajectories in the complex �-plane. However, one of its advantages is that it is an
algebraic method, which may find wide acceptance among many researchers who prefer such
an approach over analytic ones for the purpose of ease of numerical computations. Another
advantage is that it gives in one comprehensive picture the overall behaviour of the scattering
matrix for different values of the charge coupling Z. Needless to say, it is not an alternative to the
methods that study resonances in the E- and �-planes but, as previously stated, complementary
to them. Moreover, since the orbital angular momentum is a fundamental physical quantity
which is present in all spherically symmetric interactions, this gives the Regge theory wider
range of applicability. It is only when charged particles are involved in the scattering that
it makes the present approach more suited for these studies. Additionally, if only s-wave
scattering is of prime interest then the present approach might take precedence.

The reference Hamiltonian H0 which we have considered in this paper involves the
Coulomb interaction Z/r . Consequently, without any further investigation this approach is
suited only for applications of scattering processes involving charged particles. The scattering
of neutral particles is obviously a special case. However, it is believed that this technique
could also be extended to other classes of interactions. We are presently, investigating the
class of exactly solvable potentials which includes, amongst others, the oscillator, Coulomb,
Morse, Scarf, Pöschl–Teller. Preliminary encouraging results have already been obtained and
our findings will be reported in the near future.
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